
Intro to DevOps
Automation on AWS

WHITE PAPER

CONTENTS

1. Intro to DevOps Automation on AWS 3

2. The DevOps Ideal 4

3. What is DevOps? 4

4.	 A	DevOps	Definition	 6

5.	 DevOps	Automation	 6

6.	 Practice	1:	Document	 8

7.	 Practice	2:	Test	 8

8.	 Practice	3:	Code	 9

9.	 Practice	4:	Version	 10

10.	 Practice	5:	Continuous	 10

11.	 Practice	6:	Monitor	 11

12.	 	Practice	7:	Microservices	 12

13.	 	Practice	8:	Self-Service	 12

14. Getting Started 13

 Assess 13

	 Plan	 15

15.	 Summary	 16

16.	 Additional	Resources.	 17

Intro to DevOps Automation on AWS | 3

Our	guiding	principle	with	customers	is	to	automate	all	
processes	until	they	can	be	run	from	the	click	of	a	button	
and	from	a	single	command.	The	reason	we	do	this	is	
to	reduce	human	bottlenecks.	Anytime	a	human	needs	
to	run	a	process,	it	delays	feedback	and	its	correction.	
By	eliminating	these	bottlenecks,	teams	can	release	
software	systems	whenever	they	choose	to	do	so.	As	
illustrated	in	Figure	1,	we	apply	a	six-step	heuristic	to	all	
of	these	processes.	The	six	steps	are:	document,	test,	
code,	version,	continuous,	and	monitor.

This	is	another	way	of	saying	that	we	use	good	software	
engineering	practices	when	it	comes	to	infrastructure	
and	that	infrastructure	code	works	as	part	of	a	
larger	ecosystem	of	techniques	and	tools.	Additional	
considerations	include	microservices	and	self-service	
mechanisms	—	which	are	approaches	and	principles	
around	the	architecture	in	how	you	deliver	your	
software	systems.

1.
Intro to DevOps Automation On AWS

Figure 1: Introduction

Document Test Code Version

Continuous Monitor Microservices Self-service

4 |

Any	authorized	team	member	can	have	an	idea	in	the	
morning	and	have	it	confidently	deployed	to	production	
in	the	afternoon	of	the	same	day.

Let’s	dissect	this	statement	a	bit...

Any	authorized	team	member	-	This	means	any	cross-
functional	team	member	(e.g.	application	developer,	
database,	UI/UX,	QA/Testing,	or	Infrastructure)	who	is	
trusted	by	the	team.

An	idea	-	This	might	be	a	feature,	a	fix	or	whatever	
and	this	might	be	any	change:	application	code,	
configuration,	infrastructure,	or	data.	In	other	words,	
anything	that	makes	up	the	software	system.

Confidently	deployed	-	This	means	it’s	performed	
securely,	with	reduced	risk,	and	using	a	single	path	to	
production.	You’re	confident	it’s	going	to	go	through	
the	same	approved	process	every	time	on	its	way	to	
production.

Afternoon	-	This	means	there’s	a	short	cycle	time	as	it	
goes	through	a	single	path	to	production.	You	also	know	
it’s	not	a	toy	as	it’s	going	to	production.

2.
The DevOps Ideal

3.
What is DevOps?

DevOps	is	a	portmanteau	of	the	words	representing	
“Development”	and	“Operations”	teams,	but	it’s	really	
more	about	representing	the	entire	value	stream.

What	you	see	in	Figure	2	is	similar	to	what	AWS	shares	
in	some	of	its	DevOps	talks	—	by	relating	DevOps	
to	something	you’re	likely	familiar	with:	the	software	
development	lifecycle.

Intro to DevOps Automation on AWS | 5

Deployment pipeline

Feedback	loop

Plan Monitor

Build ReleaseTest

Developers Customers

Figure 2: What is DevOps?

This	might	be	for	a	web	application	or	for	a	service.	
On	the	one	side,	you	have	customers	and	the	other,	
developers.	A	developer	comes	up	with	an	idea	for	a	new	
feature,	implements	it	and	then	puts	it	through	a	process	
of	building,	testing,	and	going	through	a	release	process	
until	it	is	delivered	to	production	where	your	customers	
actually	start	using	it.	It’s	only	once	it	gets	into	the	hands	
of	your	customers	that	you	start	to	learn	from	it.	You	can	
get	usage	data,	get	direct	feedback	from	customers,	or	
start	to	make	informed	decisions	on	what	to	work	on	
next.	Based	on	this,	you	might	decide	to	update	or
improve	the	feature,	or	even	develop	a	new	feature	—	
and	then	the	feedback	loop	starts	again.

There	are	two	key	points	to	consider:

•	 The	faster	you’re	able	to	get	through	this	loop
	 determines	how	responsive	you	can	be	to	customers
	 and	how	innovative	you	are

•	 From	your	customer’s	perspective,	you’re	only
	 delivering	value	when	you’re	spending	time	on
	 developing	new	features

Therefore,	you	want	to	maximize	the	time	you	are	
spending	on	developing	new	features	and	minimize	
the	time	you	are	spending	on	the	process	for	building,	
testing,	and	releasing	software	systems.

6 |

So,	it’s	really	these	two	things	that	makeup	DevOps.	As	
a	result,	any	efficiency	you	can	drive	into	the	middle	to	
increase	these	feedback	loops	is	DevOps.	In	addition,	
though	it’s	to	be	expected,	it	often	confuses	people	
because	this	could	mean	changes	to	the	culture,	
organization,	process,	or	tooling.	Improving	anything	in	
this	feedback	loop	is	what	DevOps	is	all	about.

4.
A DevOps Definition

From	our	perspective,	the	definition	of	DevOps	is:

Confidently	speed	up	feedback	loops	through	
organizational,	cultural,	process,	and	tooling	changes	
as	a	means	to	increase	experimentation,	increase	
confidence,	reduce	risk,	and	reduce	costs.

While	the	other	facets	are	important,	the	focus	of	this	
whitepaper	will	be	on	tooling	and	automation.

5.
DevOps Automation

In	automating	the	entire	software	delivery	lifecycle,	teams	
can	deliver	software	at	the	click	of	a	button.	Every	part	
of	the	software	delivery	process	is	automated	—	from	
commit	to	production.	This	includes	the	application	code,	
configuration,	infrastructure	and	data	—	really	everything.

One	way	to	visualize	this	is	to	imagine	a	factory	assembly	
line	where	cross-functional	engineers	work	on	various	
parts	of	the	software	as	it	moves	in	its	lifecycle.

In	the	past,	teams	might	only	deliver	software	every	
few	months	or	so	—	because	of	manual,	error-prone	
processes.	Often	pieces	of	the	delivery	package	go	back	
and	forth	between	teams	separated	by	silos.	This	is	a	

Intro to DevOps Automation on AWS | 7

long,	drawn-out	and	expensive	exercise	with	the	final	
package	assembled	at	the	last	minute	with	teams	vowing	
never to repeat it again.

With	DevOps	Automation,	software	can	be	delivered	
several	times	a	day,	once	a	week	or	as	often	as	you	want	-	
it’s	always	in	a	releasable	state.

When	compared	to	traditional	delivery	methods,	this	offers	
two	key	advantages.	The	first	is	that	the	software	is	always	
ready	to	release	meaning	you	do	not	stop	and	make	a	
special	effort	to	release	the	software.	The	second	is	that	
there	aren’t	any	walls	between	the	teams.	Instead,	there	
are	autonomous	teams	made	up	of	developers,	testers,	
infrastructure,	etc.	all	contributing	to	a	single	path	to	
production.

We’re	not	just	talking	about	application	developer	changes	
here.	No	matter	if	it’s	a	change	to	the	infrastructure,	
data	or	whatever;	the	entire	package	gets	built,	tested,	
analyzed	and	deployed.	When	it	passes	all	these	checks,	
it	becomes	a	release	candidate	for	potential	release	to	
users,	if	the	business	chooses	to	do	so.

Now,	when	a	problem	is	discovered,	quick	feedback	
notifies	team	members	that	something’s	wrong	that	needs	
to	be	fixed	and	the	assembly	line	stops.	This	is	when	team	
members	make	it	a	priority	to	fix	the	error	and	commit	it	so	
that	it	moves	along	in	the	path	to	production.

So,	in	summary,	it’s	concerned	with	all	parts	of	the	
software	system	and	how	all	team	members	work	as	part	
of	this	single	path	to	production.	This	way,	software	gets	
to	users	quicker	and	in	a	more	predictable	manner.

To	see	a	video	that	visualizes	this,	go	to	
https://www.youtube.com/watch?v=SIaVsG7m8n4

https://www.youtube.com/watch?v=SIaVsG7m8n4

8 |

6.
Practice 1: Document

If	you	are	working	on	a	new	project,	you	might	first	
write	documentation	for	manually	provisioning	software	
system	resources	in	such	a	way	where	they	can	be	
automated later.

If	it’s	an	existing	project,	you	might	need	to	rewrite	the	
documentation	so	that	it	can	be	automated.	If	you’re	
already	familiar	with	a	set	of	tools	and	technology	you’re	
configuring,	you	might	jump	right	into	writing	automated	
tests.	Once	the	tests	and	code	are	committed	to	version-
control	for	a	particular	process,	we	usually	don’t	have	
need	for	this	documentation,	so	we	often	remove	it.

There’s	also	a	purpose	to	documentation	outside	of	
provisioning	and	configuring	resources.	Most	ideally,	you	
want	the	ability	to	codify	the	formatting	as	well.	This	way	
you	can	version	it	more	easily.	An	example	of	defining	
documentation	that’s	code	is	using	Markdown.

You	might	define	your	documentation	and	diagrams	
using	tools	like	CloudFormation	Designer,	Confluence,	
Markdown,	and	Cloudcraft.

7.
Practice 2: Test

After	writing	the	initial	documentation,	you	might	write	
automated	infrastructure	and	deployment	tests	based	
on	the	documentation	and/or	as	a	way	of	describing	the	
system	specifications	for	infrastructure,	environments	
and	deployments.	We	tend	to	write	infrastructure/
deployment	tests	based	on	risk	not	on	achieving	“100%	
code	coverage”	(which	is	a	fantastically	elusive	concept	
in	infrastructures	anyway)	and	as	a	way	to	describe	what	
the	system	should	do.	An	example	of	an	infrastructure

Intro to DevOps Automation on AWS | 9

8.
Practice 3: Code

Treat	everything	as	code:	the	application	code,	the	
configuration,	the	infrastructure	and	the	data.	Whether	
it’s	the	infrastructure,	the	build,	the	deployment	or	the	
application	or	service,	treat	everything	as	a	first-class	
software	artifact.

Some example infrastructure as code tools include:

•	 AWS	CloudFormation

•	 Docker

•	 Chef

For	example,	in	AWS	CloudFormation	you	define	
everything	in	a	domain-specific	language	via	JSON	
or	YAML	and	it’s	all	in	code.	Therefore,	you	can	use	
something	like	AWS	CloudFormation	to	provision	your	
servers,	network,	storage,	and	databases	-	all	of	this	
in	code.

test	platform	we	use	is	ServerSpec,	but	there	are	also	
some	interesting	ways	to	instrument	monitoring	to	
perform	tests	and	remediate	in	production	too.

Some example testing and static analysis tools you
might use include:

•	 Running	tests	via	AWS	Lambda	and	AWS	CodeBuild

•	 Gauntlt

•	 config-rule-status

•	 inspector-status

•	 ServerSpec

10 |

9.
Practice 4: Version

Next,	ensure	all	assets	are	versioned	-	application	and	
test	code,	configuration,	infrastructure	and	data	in	
version-control	systems	like	Git.	This	also	includes	build	
and	deployment	scripts,	and	deployment	pipelines	as	
well	-	all	of	it	can	be	defined	in	code.	

Common examples include:

•	 AWS	CodeCommit

•	 GitHub

•	 Atlassian	Bitbucket

10.
Practice 5: Continuous

Another	pattern	that	a	high-performing	organization	
uses	is	something	known	as	a	deployment	pipeline	or	
a	“single	path	to	production”.	This	pipeline	is	a	fully	
automated	implementation	of	your	build,	deploy,	test	and	
release	processes.	This	automation	is	part	of	a	software	
delivery	system	composed	of	stages	and	actions.	Each	
stage	and	action	provides	actionable	feedback	to	the	
team	and	to	the	individuals	who	recently	committed	the	
code.	A	Continuous	Delivery	service	is	established	to	
poll	the	version-control	repository.	When	it	discovers	
these	changes,	it	kicks	off	an	instance	of	this	pipeline.	
Therefore,	with	every	commit,	team	members	can	check	
the	status	of	the	pipeline	to	see	if	the	recent	changes	
were	successful.	If	any	of	these	actions	fail,	the	pipeline	
stops	and	there	should	be	no	more	commits	to	the	
repository	until	the	fixes	are	applied.	This	approach	
works	best	when	committing	changes	in	small	batches	
and	deploying	those	changes	to	production	in	small	
batches.	With	this	pipeline,	you	can	potentially	deploy/
release	software	to	users	several	times	a	day	or	less	
often	depending	on	your	release	cadence.	This	approach	
gives	you	the	flexibility	to	deploy	or	release	changes	

Intro to DevOps Automation on AWS | 11

whenever	you	choose	to	do	so	as	the	act	of	deploying/
releasing is essentially a “nonevent.”

Common examples include:

•	 AWS	CodePipeline

•		 Jenkins	2

•		 CircleCI

•		 Atlassian	Bamboo

11.
Practice 6: Monitor

Once	you	have	documented,	written	some	tests,	codified	
it,	versioned	the	code,	and	made	it	continuous,	you	
can	monitor	all	activity	so	that	you	are	both	passively	
and	actively	informed	of	behavior	that	might	require	
remediation.	The	exciting	thing	is	that,	on	AWS,	you	
can	automate	the	provisioning	of	all	your	monitoring	
resources	in	code	and	you	can	automatically	perform
remediation	based	on	rules	that	you	establish	within	your	
account.	Some	of	the	different	ways	you	can	monitor	are:

•	 Amazon	CloudWatch	-	“Amazon	CloudWatch	is	a
	 monitoring	service	for	AWS	cloud	resources	and	the
	 applications	you	run	on	AWS.	You	can	use	Amazon
	 CloudWatch	to	track	metrics.

•	 AWS	CloudTrail	-	“AWS	CloudTrail	is	a	service	that
	 enables	governance,	compliance,	operational	auditing,
	 and	risk	auditing	of	your	AWS	account.”ii

•		 AWS	Config	-	“AWS	Config	is	a	service	that	enables
	 you	to	assess,	audit,	and	evaluate	the	configurations
	 of	your	AWS	resources.”iii	But	what’s	most	exciting	is
	 that	you	can	use	AWS	Config	“to	codify	your
	 compliance	with	custom	rules	in	AWS	Lambda	that
	 define	your	internal	best	practices	and	guidelines	for
	 resource	configurations.	Using	AWS	Config,	you	can
	 automate	assessment	of	your	resource	configurations

12 |

	 and	resource	changes	to	ensure	continuous
	 compliance	and	self-governance	across	your	AWS
	 infrastructure”	—	in	other	words,	automated
	 compliance	and	remediation	(if	necessary).

•	 https://aws.amazon.com/cloudwatch/

•		 ii	https://aws.amazon.com/cloudtrail/

•		 iii	https://aws.amazon.com/config/

12.
Practice 7: Microservices

Microservices	are	small,	independently	deployable	
software	services	that	communicate	via	contracts	
between	other	services	(i.e.	APIs).	One	page	might	
have	hundreds	of	services	each	run	by	small	
autonomous teams. DevOps Automation does not
require	microservices	-	but	it	works	much	better	with	
microservices.	On	the	other	hand,	microservices	
essentially	cannot	function	well	without	DevOps	
Automation.	Microservices	is	its	own	discipline	and	
covered	in	several	books;	see	the	Additional	Resources	
section	for	more	information.

13.
Practice 8: Self-Service

The	goal	of	self-service	deployments	is	to	give	any	
authorized	team	member	the	ability	to	experiment,	
investigate,	and	make	destructive	changes	that	do	not	
affect	the	canonical	service	that’s	been	committed	to	the	
version-control	repository.

At	any	time,	an	authorized	user	on	a	team	should	be	able	
to	run	a	self-service	deployment.

This	is	known	as	a	pull-based	mechanism	as	the	team	
member	does	not	need	to	wait	for	someone	else	to	push	
the	deployment	to	them.	The	team	member	should	have	
some	way	to	indicate	the	version	of	the	service	that	they	
would	like	to	deploy	into	an	environment.	This	version	
should	be	based	on	changes	that	have	gone	through	

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/config/

Intro to DevOps Automation on AWS | 13

a	pre-approved	set	of	stages	by	the	team	so	that	there	
is	a	level	of	confidence	of	what	has	been	automatically	
tested.

There	are	many	ways	to	employ	self-service	deployments	
on	AWS,	but	the	AWS	Service	Catalog	is	one	such	
service	that	can	enable	them	in	a	structured	manner.

For	example,	a	developer	might	want	to	manually	make	
changes	to	an	environment	as	a	way	of	learning	how	to	
automate	the	various	components	in	the	environment.

You	will	likely	want	to	employ	a	self-destruct	mechanism	
into the environment so that there aren’t too many
unused	environments	laying	around	after	being	deployed.

14.
Getting Started

One	of	the	worst	things	you	can	do	is	attempt	to	fix	
everything	all	at	once	or	even	feel	like	you	have	to	get	
it	perfect	the	first	time.	Every	team	and	organization	is	
different	so	there’s	going	to	be	some	trial	and	error.	Start	
small and iterate.

This	section	describes	how	you	might	assess	and	plan	
for	your	DevOps	transformation	when	considering	
automation.

Assess
We	often	work	with	customers	to	formalize	the	process	
of	preparing	for,	and	kicking	off	such	an	endeavor.	We	
call	this	service	a	“Stelligent	Roadmap.”	The	service	
typically	takes	about	two	weeks	and	is	highlighted	by	
a	very	open	and	earnest	examination	of	a	customer’s	
“automation	readiness	state,”	which	results	in	an	
objective	“Scorecard.”

A	typical	engagement	consists	of	50	questions	that	we	
ask	teams	and	then	verify	through	multiple	sources.	We	
use	this	to	develop	a	detailed	report	of	recommendations	
and	scores	across	various	dimensions.	These	
recommendations	are	then	used	in	developing	a	plan	of	
action	for	transformation.

14 |

Our	assessment	includes	organizational,	process,	and	
cultural	aspects	as	well	as	tooling	and	automation.	
Here	is	a	sample	Scorecard	(from	the	Stelligent	
Roadmap	service).

If you are doing this on your own, some areas you
might consider include:

•	 Active	Configuration	Monitoring	&	Automation

•		 Application	Monitoring	&	Automation

•		 App/Service	Deployment

•		 Auditing

•		 Binary	Artifact	Storage

•		 Blue	Green	Deployments

•		 Build	Automation

•		 Build	Distribution	Storage

•		 Code	Quality	Analysis

•		 Configuration	Secrets	Management

•		 Container	Architecture

•		 Cost	Monitoring

•		 Database	Provisioning	&	Updates

•		 Decommissioning	Resources	&	Automation

•		 Deployment	Pipeline	Architecture

•		 Disaster	Recovery	&	Automation

•		 Deployment	Documentation

•		 Event-Driven	Monitoring

•		 Feedback	Mechanisms

•		 Infrastructure	and	Deployment	Diagrams

•		 Local	Development	Environment

•		 Logging	&	Automation

•		 Manual	Actions	as	part	of	a	fully-automated	workflow

•		 Infrastructure	Automation:	Network,	Node,	
	 Deployment	Pipeline

•		 Infrastructure	Code	Pipeline

Intro to DevOps Automation on AWS | 15

•		 Metrics:	Pipeline	Wait	Times,	Build	Frequency,	Cycle
	 Time,	Deployment	Frequency,	Mean	Time	to	Detect,
	 Mean	Time	to	Recover

•		 Production	Deployment

•		 Patterns:	Autonomous	Teams,	Code	Commit
	 Frequency,	Immutable	Infrastructure,	Self-Service
	 Deployment,	Stop	the	Line

•		 Security	Group	or	Firewall	Automation

•		 Self-Healing	Automation

•		 Storage	Automation

•		 Technical	Onboarding

•		 Version	Control	Usage

•		 Automated	Testing:	Acceptance	&	Functional,
	 Unit,	Infrastructure	&	Deployment,	Integration,
	 Load	&	Performance,	Penetration,	Chaos	(Resiliency),
	 Compliance

Plan
Once	we	have	assessed	a	team’s	capability	to	deliver	
software,	we	also	collaborate	with	customers	to	
envision	the	desired	automation	state,	and	provide	them	
a	“Roadmap”	to	move	from	their	current	to	desired	
state.	Thinking	and	speaking	in	agile	terms,	we	actually	
populate	an	initial	backlog	with	epic	stories	that	represent	
a	prioritized	set	of	things	that	need	to	be	done	to	achieve	
the desired state.

Here	is	a	sample	Roadmap	(sample	from	Stelligent	
Roadmap	service).	

We	have	grouped	the	recommendations	into	phases	that	
are	intended	estimate	when	tasks	should	be	acted	upon.

Phase	1	-	Orchestrate	Entire	Software	Delivery	Workflow

Phase	2	-	Improve	Utilization	&	Costs

Phase	3	-	Improve	Security	Posture

16 |

15.
Summary

In	this	whitepaper,	you	learned	how	you	can	codify	all	
the	things	including	documentation,	tests,	infrastructure	
and	deployment	pipelines.	You	also	learned	how	to	
make	all	version-control	commits	go	through	a	process	
of	building,	deploying,	testing,	and	releasing	software	
systems	that	are	both	actively	and	passively	monitored	
via	fully	configurable	managed	services	via	AWS.

LOEPriority Phase1Epic Description

Deployment
Pipeline	Stages	-
Manual

Create	an	end-to-end	deployment	pipeline	
with	manual	approvals	for	manual	actions	
and	automated	actions	for	existing	
automated	actions

1-High 3-Low 1

Deployment
Pipeline	Stages	-
Automated

Commit,	Acceptance,	Exploratory,	Preprod,	
Prod	stages	exist	and	are	chained	together 1-High 11-High

Version	Control
Usage

The	entire	software	system	is	versioned	
(application	code,	configuration,	tests,	
infrastructure	and	data)	along	with	inary	
libraries	used	by	the	application	in	a	single	
version	control	system

1-High 3-Low 1

Support
Infrastructure
Reproducibility

Each	piece	of	the	Support	Infrastructure	
(NAT,	Bastion,	Binary	repository,	Continuous	
Integration	server)	is	completely	scripted	
and	built	by	a	CloudFormation	template.	
Each	piece	of	Support	Infrasctructure	has	
its	own	CloudFormation	template	with	its	
own	lifecycle

3-Low 2-Medium 1

Figure 3: Roadmap - part of Stelligent Roadmap service

Intro to DevOps Automation on AWS | 17
@ Copyright 2019 Mphasis Stelligent. All rights reserved.

For more information, contact us at: info@stelligent.com

11710	Plaza	America	Drive
Suite	2000
Reston,	VA	20190-4743
Tel.:	+1	888	924	4539

Here	are	some	additional	resources.	The	first	link	
contains	links	to	a	myriad	of	popular	blog	posts,	books,	
talks,	videos,	open	source	tools,	and	articles	that	people	
at	Stelligent	have	published	over	the	years.

https://stelligent.com/2017/01/03/sharing-for-the-people-
stelligentsia-publications/

•		 https://github.com/stelligent

•		 https://github.com/stelligent/cloudformation_templates

•		 https://github.com/stelligent/cfn_nag

•		 https://github.com/stelligent/mu

•		 https://github.com/stelligent/config-rule-status

•		 Stelligent	Roadmap:	
 https://stelligent.com/services/preparation/

•		 https://stelligent.com/blog/

•		 DevOps	on	AWS	Radio:	
 https://stelligent.com/category/podcasts/

•		 https://twitter.com/Stelligent

•		 https://dzone.com/refcardz/continuous-delivery/	 	
 patterns

•		 https://aws.amazon.com/devops/continuous-delivery/

•		 Building	Microservices:	Designing	Fine-Grained
	 Systems	(Newman)

•		 Production-Ready	Microservices:	Building
	 Standardized	Systems	Across	an	Engineering
	 Organization	(Fowler)

16.
Additional Resources

ABOUT MPHASIS STELLIGENT
Mphasis	Stelligent	provides	DevOps	automation	professional	services	on	AWS,	enabling	engineering	teams	to	focus	on	creating	software
users	love.	Our	goal	is	to	work	closely	with	customers	to	develop	fundamentally	secure	infrastructure	automation	code,	deployment	pipelines,
and	feedback	mechanisms	for	faster,	more	consistent	software	and	infrastructure	deployments.

mailto:info%40stelligent.com?subject=
https://stelligent.com/2017/01/03/sharing-for-the-people-stelligentsia-publications/
https://stelligent.com/2017/01/03/sharing-for-the-people-stelligentsia-publications/
https://github.com/stelligent
https://github.com/stelligent/cloudformation_templates
https://github.com/stelligent/cfn_nag
https://github.com/stelligent/mu
https://github.com/stelligent/config-rule-status
https://stelligent.com/services/preparation/
https://stelligent.com/blog/
https://stelligent.com/category/podcasts/
https://dzone.com/refcardz/continuous-delivery-patterns
https://dzone.com/refcardz/continuous-delivery-patterns

