
Microservices as
Containers for AWS

WHITE PAPER

And How Stelligent mu Simplifies
AWS Declaration and Administration

of AWS Resources

CONTENTS

1. Introduction 3

2. The Problem with Monoliths 3

 Team Coupling Affects Agility 3

 Deployment Coupling Affects Availability 4

3. Why Microservices? 5

 Microservice Principles 5

 Team Autonomy 5

 Independent Deployments 5

 Public APIs 6

 Private Implementations 7

4. From Monolith to Microservices 7

 Step One: Capability Cohesion 7

 Step Two: Data Cohesion 8

 Step Three: Deployment Cohesion 8

5. How Do I Make All This Work? 8

 Continuous Delivery 8

 Containers 9

6. Stelligent mu Makes the AWS Developer’s Life Easy! 10

 mu Core Components 11

7. Summary 13

Microservices as Containers for Amazon Web Services (AWS) | 3

Stelligent® has had the privilege of working with
many clients helping them with their efforts to adopt
a microservices architecture as part of their migration
to Amazon® Web Services (AWS) cloud. These
organizations are moving to a public cloud and want
to architect their applications after these microservice
patterns. Regardless of the industry segment — whether
financial services, hospitality, health care, etc. — these
organizations have used similar patterns and approaches
to adopt these microservices architecture.

By reading this white paper, you will discover:
• The principles and best practices for implementing a

microservices architecture.

• How to decompose a monolithic application into a
microservices architecture.

• How you can improve your approach to develop a
 microservices architecture using other new
 technologies, such as containers, and how they
 complement the work that is being done in the
 microservices space.

• How Stelligent’s new tool — mu™ — helps you to
 quickly and painlessly deploy your microservices
 architecture into the cloud.

If you have multiple IT teams that are working
independently on individual components of the monolith,
these teams are all coupled together into a single release
train. For example, you may have a release train that
requires your teams to push their code out monthly to a
shared integration environment. Code might sit for a

1.
Introduction

2.
The Problem with Monoliths

Team Coupling Affects Agility

4 |

few weeks while other individuals test it and if all goes
well, they will promote the code to Quality Assurance
(QA) for more testing. If this goes well, the code is
promoted to a performance test environment, where
another group will evaluate the code and then promote
it to the security team. Unfortunately, you now have a
three-month cycle time, that is, the time it takes for a
developer to commit their code up until the time the code
is used by a customer.

The business side of the house will tell you that three
months is far too long a time, but when you have all the
teams contributing into a single release cycle — with one
team that wants to deploy daily and another team that
wants to deploy weekly — all are ultimately constrained
by the team that is delivering code the slowest. If one
team can only develop and test their code on a monthly
cycle, unfortunately, everybody else must too.

The next level of coupling we see that is challenging is
around the coupling of the deployment itself, where we
take these individual pieces of software that individual
teams are working on and connect and deploy them as
a single artifact. For example, one organization decided
to add a rewards engine to their website, so they could
make suggestions to the consumer. Unfortunately, this
feature caused the entire website to crash. Since this was
a monolithic architecture, it is very difficult to shut off the
rewards part of the application and allow the rest of the
app to work because everything is running in a
shared infrastructure.

Deployment Coupling Affects Availability

Microservices as Containers for Amazon Web Services (AWS) | 5

3.
Why Microservices?

Decomposing an application into microservices can
improve an organization’s ability to deliver software faster.
Microservices are independently deployable components;
you can decouple them from other components to
deliver code that is organized around a single business
capability. As a result, your organization can use smaller,
autonomous teams to deliver what customers want and
at the pace the market demands.

Team Autonomy
With microservices, the teams can make their own
choices and own the code that they deploy. Each team
can choose what design approach to take, the timeline
for delivery, what the priorities are, and what features
they are implementing. For example, an organization
may decide to deploy their microservices on Tomcat.
But, you might see one team choose to implement their
services using Spring Web model-view-controller (MVC)
or another that chooses JAXRS and JAVA EE. Each team
has the freedom to make its own choices, while still
adopting the prescribed outer architecture.

Likewise, individual teams can choose to move at a
different pace. If one team wants to adopt a newer
version of one of the frameworks before the other team,
they can do that. For example, if one team wants to use
the latest version of Spring, they can make that change
on a smaller scale and not wait for the rest of the teams
to aggression test that change. So, you’ve accomplished
team autonomy by giving each team complete ownership
of the code that they write.

Independent Deployments
Each service can be deployed independent of each other
in its own process space and in its own infrastructure

Microservice Principles

6 |

or container. By doing this, you get quicker scaling. For
example, let’s assume that an organization running Web
Sphere JVMs with 30 services takes fifteen minutes to
start the JVM app. In this case, your ability to scale out
the application will take a long time, which means you
will not be able to respond to demand. However, by
decomposing your application image in microservices,
you can scale faster and achieve a finer level of scaling;
rather than scaling to support the entire stack of services
for your application, you are only scaling the part that’s
running high. Additionally, you can limit the “blast radius”
of a failure. For example, with the rewards program
example discussed earlier, if it was written as a service
and failed, the rest of the application can continue
to perform.

Public APIs
The APIs that the microservice creates must be well
defined and shared with potential consumers of those
APIs. All interactions with the microservice comes
through a well-documented API. When developing
APIs, you need to create versions. If you need to make
a change and do not want to affect your current clients,
you need to consider backward compatibility. When
considering your strategy for versioning, follow these
three steps:
• Ask yourself if you really need to make a breaking
 change. If there isn’t a good business case to make
 the change, don’t do it.

• If you decide to make a change, consider making the
 change non-breaking by making it additive if possible.

• If you must make a breaking change, make sure that
 you version it to ensure backward compatibility

For example, let’s assume that you have a “full name”
file but want to change it to two fields: “first name” and
“last name.” If there is a solid business reason to make
this change, consider keeping the “full name” field and
adding the other two fields. Making the change this way
allows existing clients to continue to use this field, while
the two new fields can be used by the new clients.

Microservices as Containers for Amazon Web Services (AWS) | 7

In addition, all APIs must be secure. You do not want to
allow microservices to call each other. You also do not
want to create a single point of failure or a scaling problem
by having all service authentication go through a single
proxy or having a single system doing authentication.
Best practice is to use some sort of peer-to-peer
authentication, such as HMAC or JSON Web Tokens
(JWT). Do not write your own authentication but rather,
select a well-known, supported third-party offering.

Private Implementations
Only the information exposed by the API contract can
be shared between microservices. Everything else needs
to remain private. For example, the databases that an
individual microservice uses to support their service
cannot be shared between services. If you need data
from another database, you must go through the public
API; never talk directly to a different services database.
Otherwise you end up in a situation where you’re back at
coupling between the services.

4.
From Monolith to Microservices

Step One: Capability Cohesion
Decomposing the capabilities is all about factoring the
code out into appropriate packages and then factoring
those packages into appropriate artifacts. Most
organizations do a great job at architecting their app in
a well-thought-out manner, whether it’s a monolith or a
microservice. Often, this is already done. Once you have
those capabilities decomposed, the next step is going
after the data.

8 |

Step Two: Data Cohesion
This step is more difficult to accomplish because it
deals with foreign key constrains. If you have a foreign
key constraint between two tables and those tables are
moved into two different databases, you must solve the
problem of referential integrity at the service level through
that API.

Another problem occurs when you have two different
services that need access to data, for example, an
address table. In this case, you want to develop a third
service that has its own database so that the other two
services can access the address service.

Step Three: Deployment Cohesion
Now that you have decomposed your capabilities
and databases, you can deploy the application as
microservices instead of deploying it as a single
monolithic application.

5.
How Do I Make All This Work?

A frequent question that surfaces is how to manage all
these moving parts. Previously, you had one big thing to
deploy and now you have fifty different things to deploy.
How do you get the app into production quickly? You do
this by using continuous delivery and containers.

Continuous Delivery
Continuous delivery is a practice in software engineering
that allows teams to produce software in short cycles
and release into production. Rather than having
production deployments once a month, you go to
production multiple times a day. This decreases risk
and improves the ability to deliver code quicker, but it
also requires a high level of automation to support the
number of releases that you have with all these different
microservices.

Microservices as Containers for Amazon Web Services (AWS) | 9

Containers
When using microservices, your organization can incur
increased infrastructure overhead and reengineering
costs. For example, let’s assume you are deploying
your microservices on Amazon Elastic Cloud Compute
(EC2®) instances. For each microservice, you will need
a cluster of EC2 instances to ensure adequate capacity
and tolerance to failures. If a single microservice requires
12 T2 small instances to meet capacity requirements
and you want to survive an outage in one out of four
availability zones, you need to run 16 instances in total
— four per availability zone. This leaves an overhead cost
of four T2 small instances. If you multiply this cost by
the number of microservices for a given application, the
infrastructure overhead costs can add up quickly.

Developers use containers for deploying microservices to
address this challenge. Each microservice is deployed as
a series of containers to a cluster of hosts that is shared
by all microservices. This allows for greater density of
microservices on EC2 instances and the overhead to be
shared by all microservices. Amazon ECS (EC2 Container
Service) provides an excellent platform for deploying
microservices as containers. It leverages many AWS
services to provide a robust container management
solution. In addition, a developer can use tools, such
as AWS CodeBuild and AWS CodePipeline, to create
continuous delivery pipelines for their microservices.

This approach can also increase reengineering costs.
There is a significant learning curve for developers to
learn how to use all these different AWS resources to
deploy their microservices in an efficient manner. If each
team is using their autonomy to engineer a platform on
AWS for their microservices, then you are duplicating
engineering efforts. This duplication not only causes
additional engineering costs, but also impedes a team’s
ability to deliver the differentiating business capabilities
that they were commissioned to deliver in the first place.

10 |

6.
 Makes the AWS Developer’s Life Easy!

To address these challenges, Stelligent created mu to
simplify the declaration and administration of the AWS
resources necessary to support microservices. mu is
a developer’s tool. It quickly and efficiently deploys
microservices to AWS as containers. It organizes best
practices for microservices, containers, and continuous
delivery pipelines into the AWS resources it creates
on your behalf. mu uses a simple Command-Line
Interface (CLI) application that can be installed on the
developer’s workstation in seconds. mu makes it easier
for developers to use ECS as a microservices platform,
just like the way the Serverless Framework improves the
developer experience with Lambda and API Gateway.

Stelligent has seen a few clients that have attempted
microservices with continuous delivery but without
containers. The challenge with this approach is that
these clients were able to successfully implement the
application but at a higher cost. Alternatively, some
clients attempted microservices using containers but
did not use continuous delivery. In this case, these
organizations were able to code very quickly, but it still
took three months to get into production.

Figure 1: The World of Microservices

The “happy spot” is where you use microservices,

continuous delivery, and containers (see Figure 1)

but if you want to use AWS with containers and

continuous delivery, Figure 2 depicts the suite of

AWS Services that you will use for every single

microservice plus it is ultimately up to you to wire

these services together and get your microservice

into production. Continuous
Delivery

Contaniers

Microservices

High Cost Cycle Time

Monolith

Microservices as Containers for Amazon Web Services (AWS) | 11

mu is completely capable and here are a few examples how:
• Cloud Native — mu only uses AWS resources for deploying your microservices.
 At any point, you can stop using mu and continue to manage the AWS resources that
 it created via AWS tools, such as the CLI or the console.

• Continuous Delivery — mu uses AWS CodePipeline and AWS CodeBuild to
 continuously test and deliver your microservice to production fast.

• Polyglot — mu doesn’t have a favorite language. If you can get your microservice
running with a Dockerfile, then mu can help.

• Stateless — mu doesn’t have any servers or databases running anywhere but instead
leverages AWS CloudFormation to manage the state for all AWS resources.

• Declarative — mu delivers what you want. You declare your configuration in a
 YAML file and commit with your source code. mu takes care of setting up your
 AWS resources to meet your needs.

• Open Source — mu is MIT-licensed so you can use it commercially. Stelligent is
 always looking to improve the mu framework so please consider contributing.

Amazon
VPC

Amazon
EC2

Elastic
Load

Balancing

Amazon
ECS

Amazon
ECR

Amazon
RDS

AWS
CodePipeline

AWS
CodeBuild

AWS
CodeCommit

Amazon
CloudFormation

Amazon
CloudWatch

IAM

Virtual
Private
Cloud

Auto
Scaling

Application
Load

Balancer

ECS
Computer
Container

ECR
Registry

MySQL DB
Instance

Stack Alarm Role

Router Template

VPC NAT
Gateway

Figure 2: AWS Services

mu Core Components
The mu tool consists of three main components:

• Environments – includes a shared network (VPC) and
 cluster of hosts (ECS and EC2 instances) necessary to
 run microservices as clusters; environments
 automatically scale out or scale in based on resource

12 |

 requirements across all the microservices that are
 deployed to it. Many environments can exist (e.g.
 development, staging, production).

• Services – a microservice that will be deployed
 to a given environment (or environments) as a set
 of containers.

• Pipeline – a continuous delivery pipeline that will
 manage the deploying of a microservice in the various
 environments.

mu runs in the developer’s workstation. When a
developer wants to deploy their service with mu, they
define a YAML file, which declares the intended state of
the environment and the resources. When you run the
mu command locally, it generates AWSvCloudFormation
templates that it sends up to the AWS CloudFormation
service. AWS CloudFormation then creates your pipeline
with AWS CodePipeline and AWS CodeBuild, creates the
environment with an Amazon EC2 container service, and
creates the ECS services for the service to run.

The pipeline mu creates has four stages:

• A source stage pulls down your source code

• A build stage to use AWS CodeBuild to compile and
 prepare the application to run

• An acceptance stage where your service is deployed
 to an acceptance environment and then validated via
 automated testing

• A production stage where you deploy to the
 production environment

Inside the mu environment, you have a test and a
production environment. An environment consists of an
ECS cluster and a set of ECS container instances that are
in an Auto Scaling group and have Auto Scale policies
based on the number of containers currently running in
the cluster. There is also an Application Load Balancer
(ALB) sitting in front of the environment and handling
requests for the services inside the environment.

Microservices as Containers for Amazon Web Services (AWS) | 13

Figure 3: Environment

Figure 4: Service

mu deploys a pair of containers with its own server

repository for the docker image. There is a target group

created and URLs defined for the service are routed

through the ALB into the service.

Figure 5: Second Service

If you deploy the second service, that service is

deployed on the available ECS container instances,

a new target group is created for that second service,

and the URL for that service is routed.

@Copyright 2019 Mphasis Stelligent. All rights reserved.

For more information, contact us at: info@stelligent.com

ABOUT MPHASIS STELLIGENT
Mphasis Stelligent, a professional services and consulting firm with deep expertise in DevOps automation services on Amazon Web Services
(AWS), enables security-conscious enterprises to focus on developing software users love by leveraging automation on AWS. Our goal is to work
closely with customers to develop fundamentally secure infrastructure automation code, deployment pipelines, and feedback mechanisms for
faster, more consistent software and infrastructure deployments. By embedding with our customer’s engineering teams, we empower customers
through education and knowledge transfer of our expertise while developing the automation to make them self-sufficient on AWS. As a Premier
AWS Consulting Partner, AWS Public Sector Partner, and AWS DevOps and Financial Services Competency holder, we use our demonstrated
expertise to help customers benefit from continuous AWS innovation.

11710 Plaza America Drive
Suite 2000
Reston, VA 20190-4743
Tel.: +1 888 924 4539

6.
Summary

In this document, we discussed principles and best
practices for implementing a microservices architecture,
the approach that some organization have successfully
used to decompose their monolith into microservices,
how containers and continuous delivery can complement
a microservices architecture and help achieve the
benefits that microservices promises, and lastly, we
introduced Stelligent’s tool, mu, which helps developers
simplify the declaration and administration of the AWS
resources to support microservices. mu decreases
the infrastructure and engineering overhead costs
associated with microservices and makes it easy to
deploy microservices via containers. Just as important,
it ensures that deployments are repeatable by utilizing
a continuous delivery pipeline to orchestrate the flow of
software changes into production.

To learn more about mu, go to:
• mu - http://getmu.io/
• GitHub - https://github.com/stelligent/mu
• Blogs
 • Introduction - https://stelligent.com/2017/04/11/mu
 introduction-ecs-for-microservices/
 • Testing - https://stelligent.com/2017/04/27/mu-
 testing-continuous-delivery/
 • Databases - https://stelligent.com/2017/05/09/
 microservice-databases-with-mu/

mailto:info%40stelligent.com?subject=
http://getmu.io/
https://github.com/stelligent/mu
https://stelligent.com/2017/04/11/mu-introduction-ecs-for-microservices/
https://stelligent.com/2017/04/11/mu-introduction-ecs-for-microservices/
https://stelligent.com/2017/04/27/mu-testing-continuous-delivery/
https://stelligent.com/2017/04/27/mu-testing-continuous-delivery/
https://stelligent.com/2017/05/09/microservice-databases-with-mu/
https://stelligent.com/2017/05/09/microservice-databases-with-mu/

